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One of the important consequences of Grothendieck's Riemann-Roch theorem is 

that 

Ko(X) ® Q ~ (~  CH'(X) ® Q, 
p 

for any smooth algebraic variety X. Here Ko(X) is the Grothendieck group of vector 

bundles on X, and CHP(X) is the Chow group of codimension-p algebraic cycles on 

X. 

Recently, Bloch [23 has shown that Quillen's higher algebraic K-theory of X has 

a similar decomposition. He defines groups CHP(X, n) in terms of certain codimen- 

sion-p algebraic cycles on X × A', and we have 

K,(X) ® Q ~- @ CHP(X, n) ® Q. 
p 

Surprisingly, if we don't tensor with Q, Bloch's 'Chow groups' seem to have nicer 

properties than the usual K-groups. An example is given in this paper: if X is a point, 

viewed as a variety over a field F, then (writing CHP(F, n) for CHP(Spec F, n)) we 

have 

CHP(F, n) = 0, for p > n, 

CH~(F, n) ~ K~(F). 

Here K~(F) is the Milnor K-theory of the field F. This result (first proved by 

Nesterenko and Suslin [9]) indicates that K~(F) is the 'simplest part' of K,(F). It 
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would be impossible to state such a precise result without using something like the 

Chow groups. Also, this result allows us to see some of the standard properties of 

Milnor K-theory in a more geometric way. 

Our proof differs from the proof by Nesterenko and Suslin mainly in its use of 

explicit rational curves in affine space A~ +1 to verify relations in CH"(F,n). In 

particular, the Steinberg relation in CH2(F, 2) --- K~F comes from a specific rational 

curve in A~. This leads to the hope that the Chow groups of a field can be computed 

using a very small class of affine algebraic varieties flinear spaces, in the right 

coordinates), whereas the current defimtion uses essentially alt algebraic cycles in 

affane space. This hope was partially realized when Bloch ([11], p. 780) wrote down 

a subcomplex of CH*(F, *) related to polylogarithms. The subcomplex is defined 

using a specific embedding ( p 1  {0,1, oo})r-1 ~- ~AZr-1. The case r = 2  is the 

rational curve in this paper which gives the Steinberg relation. 

1. Defimtions 

We work throughout with quasi-projective schemes over a field; we assume that all 

irreducible components have the same dimension unless stated otherwise. For a 

quasi-projective scheme Y, we define z*(Y) to be the group of algebraic cycles on 

Y, i.e., the free-Abelian group (graded by codimension) on the set of i~educible 

closed subvarieties of Y. If i: W ~  Y is a closed subvariety which is a local 

complete intersection, there is a pullback map i*:z*(Y)'~z*(W), where 

z*(Y)' c z*(Y) is the group generated by subvarieties which meet W properly, i.e., 

in the correct dimension. (Our reference for this and similar facts about algebraic 

cycles is Fulton [4].) 

Bloch's Chow groups CHv(X, n) are defined as follows. Let F be a field, and let the 

'simplex' A" (isomorphic to the affane space A,~) be the hyperplane ET=ot~ = 1 in 

A~ +1. Given an increasing map p: {0, ..., rn) --, {0 .. . . .  n), we define ~:A" ~ A "  by 

tS*(t~) = Ep<~=ttj. If p is injective, we say that p(A") c A" is a face. For a quasi- 

projective scheme X over F, define z*(X, n)~ z*(X xr  A") to be generated by the 

subvarieties which meet all faces X x A" = X x A" properly. Figure 1 is a picture of 

such a subvariety (taking X = pt., n = 2). 

\ /  

F/g. 1. 
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We obtain in this way a complex of graded Abelian groups, 

z*(X,  .): .-. ~ z*(X,  2) x(-1)%,  z*(X,  I) x---J(- O'°t, z*(X,  O) -~ O, 

where, for i = 0 .... , n, 0r: z*(X,  n) ~ z*(X,  n - I) means pullback along the face map 

(to, ..., t . -1 )  ~ (to, . . . ,  t~- l ,  0, t , . . , ,  t ,_ 1). 

The groups CH*(X, n) are defined to be the homology groups of this complex. 

For example (as Bloch says), z * ( X , O ) =  z*(X) ,  and CH*(X, 0) is defined by 

killing cycles of the form Z(0) - Z(1), where Z is a cycle in X x A I which meets 

X × {0} and X x {1) properly. This gives precisely the usual Chow groups, 

CH*(X) ~ CH*(X, 0), of algebraic cycles on X modulo rational equivalence. 

Just as in topology, we can replace simplices by cubes in the definition of Bloch's 

Chow groups. (The point is that it will be easier to describe the product structure on 

the Chow groups if we use cubes.) 

Namely, given a strictly increasing map p: {1,..., m} -o {1 .... , n), and given e~ 

{0, 1} for i ~ {1 .... , n} - p({1,...,  rn}), the face map/3~: A m -~ A" is given by 

f t j ,  if i = p(j) ,  
(~')*(t,) 

-~(s~, if i is not in the image of p. 

We define c*(X,  n ) ~  z* (X  x r A ' )  as the group generated by those subvafieties 

which meet all faces of the cube properly. Figure 2 depicts such a subvafiety (with 

X = pt., n = 2). 

For i e {1,..., n}, e E {0, 1}, let t3~: c*(X, n) -~ c*(X, n - 1) be the pullback along the 

face map 

( t l  . . . .  , t . -  1 ) ~ ( t l  . . . .  , t i -  1,  e ,  t t . . . .  , t n -  1 )" 

Then we have a complex of graded Abelian groups, 

c*(X, n ) : . . .  -- ,  c*(X, 2)  --,  c*(X, 1) --,  c*(X, O) - ,  O, 

with boundary maps d.: c*(X, n) ~ c*(X, n - 1) given by 

d. = ~ ( - 1 ) ' ( ~  ° - o,~). 
i = 1  

Fla. 2. 
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The cubical complex d(X, .) does not have the right homology groups (as one can 

see in the case i = 0); we need to mod out by a subcomplex d~(X,.) c d(X, ") of 

'degenerate cycles'. Namely, dt(X, n) is the subgroup of d(X, n) generated by those 

cycles on X x A" which are pulled back from some cycle on X x A"-1 via a linear 

projection of the form 

(xl,..., x,) ~ (xl,..., ~k,..., x,), 

where 1 <~ k ~< n. The homology groups of the complex c~(X, ")/dt(X, ") are isomor- 

phic to the Chow groups CH~(X, n). 

We now make one last change in the defimtion of CH*(X, n). (This change is 

motivated by the computation of CH~(F, 1), as I will explain later.) Namely, we 

observe that A ~ ~ (PI - {1})", via the isomorphism 

(x~,...,x,) ~ (1 1 1 _ 1 )  
Xl 

(The map x ~ 1 - 1/x is an automorphism of p1 which permutes 1, 0, o-o.) So we can 

restate the cubical definition of CH*(X, n) in terms of (p1 _ {1})~ with {0, 1} c A 1 

replaced by {oo,0} c ( p 1  {1})t. To get the notation straight, here is my last 

version of this definition. Given a strictly increasing map 0 : { 1 , . . . , m } ~  

{1,..., n}, and given e~ e {0, oo} for i not in the image of p, the face map ~ :  (P~ - 

{1})m ~ (p1 _ {1})" is given by 

{t~ i f i=  p(j), 
(~)*t~= ~, i f i ~ { 1  ..... m}). 

Then c*(X, n) ~ z*(X x (P~ - {1})") is the group generated by subvarieties meeting 

all faces of the cube in the correct dimension, and we get a complex as before, 

c*(x,.):... -,  c*(x, 2) --, c*(X, 1) - ,  c*(X, O) --, o. 

The boundary maps are 

d, = ~ ( -  1)'(0~ - O°), 
t = l  

where 0 ° is pullback to the face h = 0 and 8~ is pullback to the face h = oo. There is 

a subcomplex of degenerate cycles d~(X, n) c d(X, n) as above, and the homology 

groups of the complex c~(X, ")Ida(X, ") are isomorphic to the Chow groups CHt(X, n). 

The product structure on the Chow groups is given as follows. For any quasi- 

projective F-schemes X, Y there is an exterior product 

CH' (X,  q) ® CHr(Y, s) --* CH '+ ' (X  x Y, q + s), 

defined via the obvious identification 

(X x (P~ - {1}) q) x ( r  x (P~ - {1})') g (X x Y) x (P~ - {1}) '+' .  
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(If we were using the simplicial definition of the Chow groups, we would have to give 

a triangulation of A s × A s at this point.) If X is smooth, then, following Bloch, we can 

pull back along the diagonal to get the product structure on X's Chow groups 

CHP(X, q) ® CHr(X, s) ~ CH p + r(x, q + S). 

One checks that the isomorphisms between the cubical and the simplicial Chow 

groups preserve products, so that this product structure on CH*(X,-) coincides with 

that defined by Block 

2. Statement of the Theorem. The Map K~(F) --, CIP(F, n) 

T H E O R E M  1. I f  F is a field, then we have 

CHt(F, n) = 0, for i > n, 

CHn(F, n) _~ K~n (F). 

Here CHt(F, n) = CHl(Spec F, n) and K~,(F) is the nth Milnor K-group of F. 

Proof CH~(F, n) is a group of codimension-i cycles on the n-dimensional variety 

(P~ - {1})~; so for i > n we certuinly have CHi(F, n) = 0. 

We now show that CHn(F ,n )~  K~n(F). We first define the map K~n(F) 

CH"(F, n); this will in fact be a ring homomorphism KM,(F) ~ CH*(X, *), 

The Milnor ring (Milnor [6]) is defined as the quotient of the tensor algebra on 

the multiplicative group F* of F, 

(Z, F*, F* ® F*, F* ® F* ® F*,...), 

by the homogeneous ideal generated by all {a, 1 - a } ,  where a, 1 - a ~ F * .  So the 

ring homomorphism K~(F) -+ CH*(F, *) is defined by specifying a group homomor- 

phism 

~b: F* ~ CHI(F,  I) 

such that q~a)~b(1 - a) = 0 in CHZ(F, 2), when a, 1 - a E F*. 

Now an element of CH"(F, n) is represented by a 0-cycle on (p1 _ {1}), which 

meets all proper faces of the cube in the correct dimension, i.e., not at all. So it's 

represented by a sum of closed points in (P~ - {0, 1, 0o}) ". 

The homomorphism q~: F* -~ CHI(F, 1) is defined by sending {1} to 0 ~ CHI(F, 1), 

and {a} with a ~ F* - {1} to the class of the point a e P~ - {0, 1, co}. For  short, we 

say that q~{a}) = [a], for a ~ F *  - {l}. (If I had not changed coordinates, in the 

definition of cn(F, n), from A" to (p1 _ {I})", this map would have to be defined by 

[ 1 / ( 1  - a ) ] . )  

To check that this is a group homomorphism, we need to know that 

[ a ] + [ ! ] = 0 ,  for a ~ F - -  {0,1} 
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[a] + [b] = [ab], for a,b, a b e F  - {0, 1}. 

To show that a given element of c~(F, 1) is 0 in CH~(F, 1), we have to show that it's 

the 'boundary'  of some element of cl(F, 2). An element of cl(F, 2) is a sum of curves in 

(p1 _ {1})2 meeting the one-dimensional faces of the square in points and not 

meeting the zero-dimensional faces at all. 

Take the rational curve 

{ ax -- ab'~ 

in ( p 1  {1})2, for a, b e F -  {0,1}. One checks easily that this curve defines an 

element of cl(F, 2). It intersects the one-dimensional faces of the square (i.e., 

the lines x = 0, x = 0% y = 0, y = ~ in (p1 _ {1})2) in the points (oo, a), (b, 0), 

and (ab, ~ )  if a b ¢  1. If ab = 1, it intersects only in (o% a) and (l/a, 0). This implies 

that 

[a] + I ~ l  = 0, for a e F -  {0, 1} 

and 

[a] + {b] -- [ab], for a, b, abe  F - {0, 1}, 

as promised. 

(Bloch gives a more conceptual proof that CHI(F,  1 )~  F*, using the relation 

between divisors and fine bundles, but that proof doesn't seem to generalize to higher 

codimension, since the relation between higher-cxxiimension subvarieties and vector 

bundles is more complicated. For that reason I gave a computational proof here, in 

the spirit of the rest of this paper.) 

So we have a homomorphism qS: K~(F)  -~ CHI(F, 1). We now check the Steinberg 

relation, i.e., that ~a)q~(1 - a) = 0 in CHZ(F, 2), for a, 1 - a e F*. By my description 

of products in the Chow groups, this means showing that the point (a, 1 - a ) e  

(p1 _ {1})2 _ (the square) is the boundary of something in c2(F, 3). 

Take the rational curve 

in (p1 _ (1})3. Its only intersection with any codimension-1 face of the cube is the 

point (a, 1 - a, 0); so we deduce that [(a, 1 - a)] = 0 in CH2(F, 2). 

So we have produced a ring homomorphism 

KM,(F) -~ CH*(F, *). 
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3. The M a p  CH ' (F ,  n) ~ K ~ ( F )  

Defining the inverse map CH"(F, n) ~ K~(F) is more complicated. I f F  is algebraically 

closed, we can send the point (xl .... ,x,)  e ( P  1 -{1})"-( the  cube) (i.e., (xi, ..., x,) 

(P~ - {0, 1, co})") to {xl .. . . .  x.} e K~(F). For a general field F, a closed point p in 

(P~ - {0, 1, co})" need not be of the form (xi, . . . ,  x,) with xi~ F; it may have residue 

field x(p) which is a nontrivial finite extension of F. In any case, we have a map 

Spec x ( p ) ~ ( P r  ~ - {0, 1, co})" = (A~ - {0, 1})" 

which gives n 'coordinate functions' xl .... , x, ~ x ( p ) -  {0, 1), and we have x(p) = 

F(xl ..... x,). The map CH~(F, n) ~ K~(F) is defined by sending p to 

N ~ ( p ) / F { X 1 , . . .  , Xn} E K~(F). 

Here 

{xl, . . . ,  x,} e K~,(~(p)) and N~/F: K~,(E) -~ KM.(F) 

(for any finite extension ElF of fields) is the norm homomorphism defined by Milnor 

[6], Bass-Tare [1], and Kato [5]. (Kato was the first to show that it was well-defined, 

independent of a choice of generators for E over F.) For n - 0, K~(E) = K~o(F) = Z, 

and the norm is just multiplication by [E:F];  for n = 1, the norm N~/v: E* ~ F* is 

the usual norm studied in Galois theory. 

We have to check that a 0-cycle in c"(F, n) which is the boundary of a l-cycle in 

:(F,  n + 1) maps to 0 in K~,(F). It suffices to consider an irreducible curve 

C~c"(F, n + 1); that is, C is an irreducible curve in (pi  _ {1}),+1 which meets the 

codimension-1 faces of the (n + 1)-cube in points, and which does not meet the 

codimension-2 faces. 

Let D be the normalization of C; then D is a smooth curve with a finite map 

D-~ C, as is well known. We can forget about C and just consider the finite (in 

particular, proper) map D ~ ( p i _  {i}),+1 which again meets the codimension-1 

faces of the cube in points and does not meet the codimension-2 faces. It follows from 

Example 1.2.3, p. 9, in [4] that the 'boundary' of D in c"(F, n) coincides with the 

boundary of C; so it suffices to show that the boundary of D maps to 0 in KM,(F). 

The map D ~ ( P  ~ - {1}) "+i can be described by n +  1 rational functions 

gl,--., 9,+ ~ on D. The pevious paragraph implies that no 9~ is identically equal to 0 

or 0% and that any w e D  with g,(w) = 0 or co has gj(w)~ {0, ~}  for a l l j  ~ i. 

Let P(D) be the unique smooth compactification of D; P(D) is also a curve over F. 

Then for each closed point w ~ P(D), there is an associated valuation on the field K of 

rational functions on P(D) (or D) and, hence, (by [6]) a map c0w:K~+l(K)~ 

K,~(~w)). In this situation, Suslin's reciprocity law ([8]) asserts that for any 

x ~ K~+ i(K), 

N,,(~)/r awX --- 0 in K~(F). 
w ~ I"(D) 
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(Note:  SuslJn originally proved this modulo torsion, but thanks to Kato's proof in 

[5] that the norm is welt-defined, Suslin's proof gives this result. See [10] for details.) 

Now we have g~,..., g, + ~ ~ K*, so {g l, ..., g, + ~ } s K,~+ i (K) and Suslin's reciprocity 

law says that 

N~(w)/vOw{g2 .... ,g .+:} = 0 .  
w~P(D) 

f f  w E P(D) - D, i.e., w is a 'point at infinity', then one of the g~ must have gt(w) = 1. 

(ff not, the map D ~ (p1 _ (1}),+2 would not be proper.) And no matter what the 

other functions 0j do at w, Milnor's definition of 0w shows that a~{g2, ..., g,+ 2} = 0 if 

some g~(w) = 1. So we can write the sum without the points at infinity: 

N~(w)/v #~{gi . . . . .  9,+2} = 0. 
w~D 

For w E D, Milnor's definition of 0~{ga .... , g.+:} shows that it's 0 if the g~ are all 

holomorphic and nonzero at w. And if some g~ does have a zero or pole at w ~ D, 

then all the others are holomorphic and nonzero, so Milnor's definition gives 

: ( -  1) ordw0,b2( ) . . . . .  

This implies that 

N~(w)/vOw{gl . . . . .  g.+l} 

is the element of KM.(F) defined by the boundary of D in c"(F, n). Suslin's reciprocity 

law asserts that this element is 0. So the map CH"(F, n) ~ KM,(F) is well-defined. 

4. The Composition CH'(F, n) --, K,M(F) - ,  CH'(F, n) 

From our definitions it is clear that the compositions KM,(F) ~ CH"(F, n) -~ KM,(F) is 

the identity. We now show that the composition CH"(F, n) -~ KM.(F) --* CH"(F, n) is 

the identity. That  is, for a closed point p ~ (P~ - {0, 1, co})", one has to show that 

IV]  = [N,,w)/v ( p)] in CH"(F, n), 

where I am using an obvious shorthand (the norm gives an element of K~,(F),  hence 

(after a choice) a sum of F-rational points in (P~ - {0, 1, ~}),+2). Of course, this is 

trivial if p is itself F-rational, hence in particular, if F is algebraically closed. In 

general, it will suffice to show that any element of CH"(F, n) is equivalent to a sum of 

F-rational points. 

Here is the proof for CHI(F, 1). We are given p e P ~  - {0, 1, ~ }  and, hence, a 

generator x ~ ~ p) - {0, 1). Let 

w(x) = x d - an_ i x  d-  ~ + " "  + ( - l ) d a 0  
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be the monic  irreducible po lynomia l  of x over  F; clearly ao e F*  is the classical n o r m  

of x. Define a po lynomia l  in two variables by 

p(x, y) = re(x) - (x - 1) ~- l(x - ao)y. 

Then  p(x, y) = 0 defines a curve in (p1 _ {1})2, in fact an element  of  cZ(F, 2). The  

curve intersects y = 0 only in the given closed point  p and y = oo only at ao. 

Fur the rmore ,  as a po lynomia l  m x, p(x, y) has leading coefficient 1 - y and constant  

te rm ( -  1)dao(t - y), so it doesn ' t  intersect x = oo or x = 0 a t  all. (Keep  in mind  that  

we are work ing  in (p1 _ {1})2.) So 

[ p ]  = [ao] = [N~) /F (p ) ]  in C H I ( F ,  1), 

as desired. 

The  p roo f  for CH"(F,  n) is as follows, for an infinite field F. (The p roo f  for a finite 

field is given in the next  section.) Let  Sk be the set of  points  p e ( P ~  - {0, 1, co})" such 

tha t  the residue field x(iv) is generated over  F by the first k coordinates  of  p; that  is, 

such that  x(p) = F(x l , . . . ,  xt). Then  So c ... c S,, So is the set of F- ra t iona l  points  in 

( P ~ -  {0, t, oo})", and  S, is the set of  all closed points  in the scheme (Pv ~ - 

{0,1, 

L E M M A  2. I f  peS~,  then p is equivalent in CH"(F, n) to a sum of  points in St_ 1. 

(Applying L e m m a  2 repeatedly,  we find that  every element  of  CH"(F,  n) is equivalent  

to a sum of F- ra t iona l  points,  as desired.) 

Proof  In what  follows, I will consistently write x l  . . . . .  x ,  to denote  the 'coor-  

dinates '  of  p, so tha t  x l , . . . ,  x ,  ~ x(p)  - {0, 1}. I will use tl, . . . ,  t,  as variables. 

Every element of St can be defined by n po lynomia l  equat ions  over  F of the form: 

P1(q) = 0 

pt(tl  . . . .  , 6 )  = 0 

pt+ (tl . . . .  , t t ) =  t t+l  

p,(tl  . . . .  , 6 )  = t,. 

In fact, for i = 1 . . . . .  k we can choose p, so tha t  p~(xz,..., x ,_ l ,  h) is the monic  

irreducible po lynomia l  for x~ over  F(x~ . . . .  ,x,_.O. (Of  course, each element  of  

F(xi ,  ..., x , _  1) can be writ ten as a po lynomia l  over  F in xl ,  . . . ,  x~_ 1.) In  part icular ,  

this is true for Pt; let d be the degree of xk over  F(xa . . . . .  x t_  ~), i.e., the degree of p,  as 

a po lynomia l  in tt. I f  d = 1 then the l e m m a  is true; so we assume d />  2. And for 

i = k + 1 . . . .  , n, we choose Pl so that  p~(xl,. . . ,  xk) = xi. By the division a lgor i thm for 

po lynomia ls  in one variable over  the field F(xl  . . . .  , x t - O ,  we can assume that  

P,+ 1, .--, P, have t t-degree less than  d. 

The  idea is tha t  we can replace p by  a point  in S t -  1, in which xk is replaced by the 

classical n o r m  Ne(~, ....... ~)/F(~ .. . . . . . .  ,)(xt), a long with points  in St for which the degree 
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of xk over  F ( x l , . . . , x k - 1 )  is less than d. ff this works,  then L e m m a  2 is 

proved,  by induct ion on  d. (For  brevity,  I wqll write N(x~) instead of 

Ne(~ ....... ~)/r(~,~ ..... ~k_~)(Xk) ") 

Le t  ( - 1 ) d a o ( t l , . . . ,  t k_  1) be the cons tant  te rm of pk(ti . . . . .  tk), viewed as a poly- 

nomia l  in tk. Define 

q( t i , . . . ,  t,, u) = p , ( t l , . . . ,  tk) - (tk-- 1) d- l(tk-- ao(ti, ..., tk_ i))u. 

Then  consider the curve C in ( p l _  {1}),+ 1 defined by the following n equations.  

p i ( t i )  = 0 

p~_ i(tl  . . . . .  tk_ t) = 0 

q(t~ . . . . .  t~, u)  = 0 

pk+i(t l  . . . .  , tk) = tk+i 

p . ( t l , . . . ,  t~) = t .  

We now describe the intersections of  this curve with the codimension-1 faces of the 

(n + t)-cube. By definition of  P l , . . . , P , - I ,  the curve C does not  intersect tl = 0, 

tl = oo . . . . .  tk+ 1 = 0 ,  or  tk+ 1 = c~. (Recall tha t  x l  . . . .  , x ~ ( p ) - { 0 } . )  As a poly- 

nomia l  in t,, q(tl  . . . .  , t~ ,u)  has leading coefficient 1 -  u and constant  term 

( - 1 ) d a o ( t l , . . . , t ~ _ l ) ( 1 - u ) .  Also, we know that  a o ( x l , . . . , x k _ l ) ~  0 in x(p), since 

pk(x i , . . . ,  x , _  i, tk) is the irreducible po lynomia l  for x~ over  F(x i  . . . . .  x k - i )  and x,  ~ 0. 

So C doesn ' t  intersect tk = 0 or tk = oo. Finally, since t l , . . . ,  tk are never  equal to oo 

on C, the equat ions  involving tk+ ~ . . . . .  t,  show tha t  C doesn ' t  intersect tk+ i = oo,. . . ,  

o r  t .  = o0. 

So C can only intersect the faces u = 0, u = oo, t k + 1 = 0, . . . ,  and  t, = 0. Fur ther -  

more,  it intersects each codimension-1 face in the correct  dimension. In  fact, it 

intersects u = 0 only at  the given point  p, u = co only at  the poin t  (x l , . . . , xk_  1, 

N(xk), . . . ,  p~(x i , . . . , x , -1 ,  N(xk)),...), and intersects tt = 0 (k + 1 ~ i ~ <  n) only in 

points  because x~ # 0 in x(p). So if C meets no codimension-2 face of the cube, then 

C defines an element  of  c~(F, n + 1), and  we can conclude that  the ' bounda ry '  of C in 

c"(F, n) represents 0 in C H ' ( F ,  n). This would mean  that  the given point  p e Sk is 

equivalent  in CH~(F, n) to the sum of 

(xi,  .--, xk-  i, X(x~,), . . . ,  p d x  l, . . . ,  xp,_ 1, N(xj,)), ...) e S , _  i 

and points  in Sk with the degree of the new xk over  F(x~, . . . ,  xj,_ 1) smaller  than  

for p. (For  this we have to observe that  p~, for k + 1 <~ i <~ n, has tk-degree less 

than  the tk-degree of p~. Also, the equat ion  q(tl . . . . .  tk, u) = 0 is of degree 1 in u, 

so it can be solved for u as a ra t ional  function (over F)  in xl  . . . .  ,x~_~, and the new 

Xk.) 
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The proof would thus be fimshed, except that C may in fact meet some 

codimension-2 face of the cube. The rest of the proof consists of using general-position 

arguments to avoid this problem; this is why we require here that F be an infinite 

field. (Finite fields do not have enough elements for general position to work well.) 

Here C n {u = 0} (=  our original point p) intersects no other face, so the only trouble 

occurs when C intersects two of the faces u = oo, t~+ 1 = 0,..., t, = 0 in the same point. 

That  is, there is trouble (1) when p~(xl  . . . .  , x k - 1 ,  tk) and p:(xa ,  . . . ,  x~_  1, t~) (for some 

i ~ j, i, j a {k + 1 .... , n}) are not relatively prime as polynomials in tk over the field 

F ( x l ,  . . . ,  x~_  O, or (2) when p i ( x l , . . . ,  x k - 1 ,  N(x~) )  = 0 for some i e {k + 1,..., n}. 

We first show that every point p E Sk is equivalent to a sum of points in S~, with the 

same degree d, for which the problem (1) does not occur. 

First, we use a version of the earlier proof that [a] + [b] = [ab] in CHI(F, 1) to show 

that p is equivalent in CH"(F, n) to a sum of points of the same form for which each 

p t ( x l  . . . .  , x k -  1, 6 )  (k  + 1 <~ i <~ n) is either monic and irreducible as a polynomial in tk, 

or constant as a polynomial in tk. 

Then problem (1) only comes up if two (or more) of the p:s, k + 1 ~< i ~< n, are equal 

and of degree > 0. In this case, we imitate the proof that {a, a} = { - 1, a} in Milnor 

K-theory, using the Chow groups instead. Namely, by a version of the Steinberg 

relation (a, 1 - a) = 0 in CHZ(F, 2) which I proved earlier, we deduce that 

(a ,a )  = a 1 ----a , a  = ( - 1 ,  a). 

Applying this result repeatedly, we deduce that p is equivalent to a sum of points of the 

same form for which problem (1) does not occur. 

For  problem (2), it seems natural to change xk appropriately. To be precise, modulo 

Sk- 1 we can replace xk by cxk,  for all but finitely many c ~ F*. I claim that there are only 

finitely many c for which problem (2) arises; and this completes the proof for an infnite 

field F. 

The simplest situation that shows how one can replace xk by cxk  and simpler terms, is 

that i fx  is a point in P~ - {0, 1, oD} of degree d (i.e, the residue field o f x  has degree d 

over F), and c ~ F*, then (cx)  = (c d) + (x) in CHI(F, 1). This follows from our earlier 

results, but I won't write out the proot~ since we need a more general version in the next 

paragraph. 

amely, we consider the following curve in (p1 _ {1}),+ 1 

p l ( t l )  = 0 

Pk-- l(t~ . . . .  , t~_ 1) = 0 

( 6  - cd)Pk(t l ,  . . . ,  tk) - -  Cd(t~ --  I)pk(tl, ..., tk-1, t k /c )u  = 0 

pk+l(tl .... , tk) = tk+ 1 

p , ( t l , . . . ,  tk) = t ,  
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Here we know that for k + 1 ~< i ~< n, 

p~(x~,..., x~) = x~ ~ O; 

so, for all but finitely many c, 

p~(x i , . . . , x~_i ,  cxk) ¢ 0 and p~(xl , . . . ,xk_~,c  d) ¢ 0 .  

This means that for all but finitely many c, this curve is in c"(F, n + 1). For such c, we 

deduce that p~c" (F ,n )  is equivalent (in CH"(F,n)) to the sum of (xl . . . . .  xk~ ,  

cxk, ..., pt(xl, ..., cxk), ...), a point in S k_ 1, and points in Sk with smaller d. 

We now verify that the significant point here, with xk replaced by cxk, will (for almost 

all c) solve problem (2). (Note that problem (1) remains solved, since the polynomials 

Pk+l . . . . .  p, are unchanged.) Here (for k + l < ~ i < ~ n )  N(x~) is replaced by 

N(cxk) = dN(x~), so problem (2) occurs when 

pi(xl , . . . ,  x~,_ 1, caN(xk)) = O. 

NOW d i> 1, N(Xk) ~ 0, and the polynomial p~(x~, ..., x,_~, tk) is not identically zero, 

since p~(xi , . . . ,xO = x~ ~ 0 in ~ p ) .  So there are only finitely many c e F*  for which 

p~(xl, ..., Xk- l ,  CaN(Xk)) = 0, i.e., for which problem (2) arises. 

Therefore, for F infinite, there exists a c e F* for which problems (1) and (2) do not 

arise. [] 

5. Finite Fields 

For F f ~ t e ,  ~ p) w II also be fimte, so the multiplicative group ~ p)* is cyclic; let z be 

a generator. Then the given point p = (xl .... , x,), with x~ e ~ p)*, can be written as 

(z~,,...,z~,). Let n(u) be the irreducible polynomial for z over F; then p is the 

projection of a point in (P~ - 1) "+I defined by the following equations. 

~ u )  = 0 

t n = /2 / -  

(We project this point into (P~ - (1))" by throwing out the u-coordinate.) 

Then we can consider a curve in (P1 - {1)) "+~ which is itself the projection of the 

following curve in (p1 _ {1)),+2 Here we define ao to be the norm N,,q,~:r(z), so that 

re(u) has constant term (-1)aa0 . 

re(u) - (u - ao)(U -- 1)a-iv = 0 

t I ~- U l~ 

t n -~- t l  ~,, 

(This curve is projected into (P~ - {1)) "+1 by ignoring u.) 
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The curve in (p1 _ {1}),+1 intersects the faces of the (n + 1)-cube only for v = 0, 

giving the original point p, and for v = oo, giving (a~ ' .... , a~") (or 0, if one of the 

powers of ao equals 1). This shows that p is equivalent in CH"(F, n) to an F-rational 

point. This completes the proof for finite fields F. 

1 should mention that the Miinor K-groups K~F of a finite field F are actually 0 

for n >/2 by [6], and so the groups CH"(F, n) are also 0 in this case. 

6. Comments 

The difficulties in the last part of the proof (proving that the composition 

CH"(F, n)~ K~F)~ CH"(F, n) is the identity) result from the complexity of the 

definition of the norm map in Milnor K-theory. The norm map on K~ has a 

well-known explicit description, but Milnor and Bass and Tate were only able to 

construct the general norm map by an inductive procedure similar to my argument 

above. 
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