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One of the important consequences of Grothendieck’s Riemann-Roch theorem is
that

Ko(X)®Q x B CH/(X)®Q,

for any smooth algebraic variety X. Here KX} is the Grothendieck group of vector
buadles on X, and CH?(X) is the Chow group of codimension-p algebraic cycles on
X.

Recently, Bloch [2] has shown that Quillen’s higher algebraic K-theory of X has
a similar decomposition. He defines groups CH?(X, 1) in terms of certain codimen-
sion-p algebraic cycles on X x A", and we have

K(X1®Q =B CH X, 1R Q.

Surprisingly, if we don't tensor with Q, Bloch’s ‘Chow groups’ seem to have nicer
properties than Lhe usual K-groups. An example is given in this paper: if X is a point,
viewed as a variety over a field F, then (writing CHP{F, n} for CH?(Spec F, n}) we
have

CHPF,n)=40, forp>n,
CH™F, n) = KM(F).

Here KJ(F) is the Milnor K-theory of the field F. This resuit (first proved by
Nesterenko and Suslin [97) indicates that K}{(F) is the ‘simplest part’ of K (F). It
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would be impossible to state such a precise result without using something like the
Chow groups. Also, this result allows us to see some of the standard properties of
Milnor K-theory in a more geometric way.

Our proof differs from the proof by Nesterenke and Suslin mainly in its use of
explicit rational curves in affine space AF"' to verifly relations in CH"(F,n). In
particular, the Steinberg relation in CH*(F, 2} = K¥F comes from a specific rational
curve in 43, This leads to the hope that the Chow groups of a field can be computed
using a very small class of affine algebraic vacdeties (linear spaces, in Lhe right
coordinates), whereas the current definition uses essentially ali algebraic cycles in
affine space. This hope was partially realized when Bloch {[11], p. 780) wrote down
a subcomplex of CH*(F, ») related to polylogarithms. The subcomplex i3 defined
using a specific embedding (P! ~ {0,1, 00})""* = A* "% The case r =2 is the
rational curve in this paper which gives the Steinberg relation,

1. Definitions

We work throughout with quasi-projective schemes over a fieid; we assume that all
irreducible components have the same dimension unless stated otherwise. For a
quasi-projective scheme Y, we define z*(Y) to be the group of algebraic cycles on
Y, ie., the free-Abelian group (graded by codimension} on the set of irreducible
closed subvarieties of Y. If i:W— Y is a closed subvariety which is a local
complete infersection, there is a pullback map *:z%YY — z*(W), where
z*(YY < z*{Y) is the group geperated by subvarieties which meet W properly, ie.,
in the correct dimension. (Our reference for this and similar facts about algebraic
cycles is Fulton [4].)

Bloch’s Chow groups CHP(X, n} are defined as follows. Let ¥ be a field, and let the
‘simplex” A" {isomorphic to the affine space A}) be the hyperplane X ;=1 in
A}’ ', Given an increasing map p:1{0,...,m} — {0,...,n}, we define §: A™ - A" by
L) = E, =ity If p is injective, we say that 5(A™) — A" is a face. For a quasi-
projective scheme X over F, define z*(X, n) < z*(X xz A") to be generated by the
subvarieties which meet all faces X x A™ « X x A" properly. Figure 1 is a picture of
such a subvariety {taking X = pt, n = 2).

/

Fig. I.
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We obtain in this way a complex of graded Abelian groups,
4K, o 24X, 2) SR ey ) BN ex 0y 0,
where, for i =0,...,n, & z%X,n) = z%X, n — |) means puliback along the face map
(Foseos by ) 2 (boya Brm 1. Bt lm i

The groups CH*(X, n} are defined to be the homology groups of this complex.

For example (as Bloch says), z*(X,0) = z*(X), and CH*(X, 0} is defined by
killing cycles of the form Z(0) — Z{1), where Z is a cycle in X x A' which meets
X x {0} and X x {t} properly. This gives precisely the usuat Chow groups,
CH*(X) = CH*(X, 0), of algebraic cycles on X modulo rational equivalence.

Just as in topology, we can replace simplices by cubes in the definition of Bioch’s
Chow groups, (The point is that it will be casier to describe the product structure on
the Chow groups if we use cubes.}

Namely, given a strictly increasing map p: {1,...,m} - {i,...,n}, and given &€
{0,1} for ie {1,...,n} — p{{1,...,m}), the face map p*: A™ — A" is given by

. ty, ifi=p(j},
4 *{ti — ! ) . . -
{pryHe) {81, if i is not in the image of p.

We define ¢*{X,n} < z*(X % A") as the group generated by those subvarieties
which meet all faces of the cube properly. Figurc 2 depicts such a subvariety (with
X=pt,n=2).

Forie{l,...,n},ee{0,1}, let 3i:c*(X, n) » ¢*(X,n — 1) be the pultback along the
face map

([P S NE 8 | PPN VLY TRory My X
Then we have a complex of graded Abelian groups,
X, n) = cMX, )= eMX, 1) X, 00 0,

with boundary maps d,: ¢¥(X,n) = c™X, n — 1) given by

dy= 3, (167 — b,

Fig. 2.
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The cubical complex ¢{{X,} does not have the right homology groups (as one can
see in the case i = 0); we need to mod out by a subcomplex d(X,+) = ¢(X,*) of
‘degenerate cycles’. Naroely, d'(X, n) is the subgroup of ¢'(X, n) generated by those
cycles on X x A" which are pulled back from some cycle on X x 4" * via a linear
projection of the form

{xls"':xn) [ace (xl»"'sxAb-"ixn)s

where 1 < k < n. The homology groups of the complex ¢/(X,*)/d"(X,"} are isomor-
phic to the Chow groups CIIYX, n).

We now make one last change in the definition of CH*(X,n). (This change is
motivated by the computation of CH!F, 1), as 1 will explain later) Namely, we
ohserve that A™ =2 (P! — {1})", via the isomorphism

1 1
(xl.:!"'-:xn) e (1 T T T 1- -)'

*1 Xy
(The map x =+ | — 1/x is an avtomorphism of P' which permutes 1, 0, co.) So we can
restate the cubical definition of CH*(X, n} in terms of (P! ~ {1})" with {0,1} = A!
replaced by {uo,0} < (P! — {1})". To get the notation straight, here is my last
version of this definition. Given a strictly increasing map p:{l,...,m}—
{1,...,n}, and given g {0, o} for i not in the imape of p, the face map 5% (P' —
{1 > (P! — {1}}" is given by
(%)t = {t"’ i =)
& iFigp({1,...,m}).
Then ¢*(X, n) < z%X x (P' — {1})" is the group generated by subvarieties meeting
all faces of the cube in the correct dimension, and we get a complex as before,

cMx,her - X, 2} MY, D o MK, 0 0.

The boundary maps are
dy= Y, (=167 -3,

i=1

where & is pullback to the face 1, = 0 and ;" is puliback to the face f; = oc. There is
a subcompiex of degenerate cycles d'(X,n) = ¢/(X,n) as above, and the homology
groups of the complex c'(X,*)/d(X, -} are isomorphic to the Chow groups CHYX, n).

The product structure on the Chow groups it given as follows. For any quasi-
projective F-schemes X, Y there is an exterior product

CH?(X, ) @ CHY(Y,s) = CH "X x Y, ¢ + 5),
defined via the obvious identification

(X x (P — {19 x (¥ x (P! — {2 X x Yy x (BT - (1)
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(If we were using the simplicial definition of the Chow groups, we wounld have to give
a triangulation of A x A" at this point.} If X is seooth, then, following Bloch, we can
pull back along the diagonal to get the product structure on X's Chow groups

CH?(X, q) ® CH'(X, 5) -» CHP*"(X, g + 5).

One checks that the isomorphisms between the cubical and the simpliciai Chow
groups preserve products, se that this product structure on CH*X, -} coincides with
that defined by Bloch.

2. Statement of the Theorem. The Map K(F) - CH(F, n)
THEOREM L. If F is a field, then we have

CHYF,m} = ¢, fori>n,
CH®(F, n) = KM(F).

Here CHYF, n) = CH'Spec F,n) and K¥(F) is the nth Milnor K-group of F.

Proof. CH'(F, n) is a group of codimension-i cycles on the n-dimensional variety
(P} — {1})% so for i > n we certainly have CH'(F,n) = 0.

We now show that CHYF,n) = KX(F). We first define the map KN(F)-—
CH™(F, n); this will in fact be a ring homomorphism K¥(F)— CH*(X,*).

The Milnor ring (Milnor [6]) is defined as the quotient of the tensor algebra on
the multiplicative group F* of F,

(Z.FA*F*QF L F"F*F*,..),

by the homogeneous ideal generated by all {a,1 — g}, where a,1 — ac F* So the
ring homomorphism K}F) — CH*(F, ) is defined by specifying a group homomor-
phism

¢: F* » CHY(F, 1)

such that ¢{a)¢(1 — g} = 0 in CH#(F,2), when q,1 — ae F*.

Now an element of CH*F,n) is represented by a O<cycle on (P* - {1})* which
meets all proper faces of the cube in the correct dimension, i.e., not at all. So it’s
represented by a sum of closed points in (Py — {0, 1, 0})™

The homomorphism ¢: F* - CHY(F, 1) is defined by sending {1} to 0 & CHXF, 1),
and {a} with ae F* — {1} to the class of the point ae P} — {0, 1, «0}. For short, we
say that ¢{{a}) =[a], for ae F* — {t}. (If I had not changed coordinates, in the
definition of ¢"(F, n), from A™ to (P' — {1})", this map would have to be defined by
{a} = [1/1 - a)])

To check that this is 2 group homomorphism, we need to know that

[a] + F:l =0, foraefF—{0,1}

ad
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and
[a} i [b] = [ab], forab,abeF - {0,1}.

To show that a given element of ¢'(F, 1} is 0 in CHY(F, 1), we have to show that it’s
the ‘boundary” of some element of ¢*(¥, 2). An element of ¢!(F, 2) is a sum of curves in
(P* — {1})% meeting the one-dimensional faces of the squatre in points and not
meeting the zero-dimensional faces at all,

Take the rational curve

ax —ab
xe ("’ “:E)
in (P! — {1})%, for a,beF ~ {0,1}. One checks easily that this curve defines an
element of c¢'(F,2). It intersects the one-dimensional faces of the square (ie.,
the Hnes x =0, x =00, y== 0, y= oo in (P! — {1})?) in the points {o0,a), {b,0),
and (ab, 20) if ab # 1. If ab = 1, it intersects only in {o0, a) and (1/a, 0). This implies
that

[al + Lé} ={, foraec¥F — {01}

and
[a]l + [b] = [ab], fora,babeF —{0,1},

as promised.

(Bloch gives a more conceptual proof that CHY(F, 1) = F*, using the relation
between divisors and line bundles, but that proof doesn’t seem to gencralize to bigher
codimension, since the relation between higher-codimension subvarietics and vector
bundles is more complicated. For that reason I gave a computational proof herc, in
the spirit of the rest of this paper)

So we have a homomorphism ¢: K¥(F) —» CH'(F, 1). We now check the Stejnberg
relation, i.e., that a}é(l — a) = 0 in CH*(F, 2), for a, 1 — ac F*. By my description
of products in the Chow groups, this means showing that the point (a,1 —a)e
(P! — {11)? — (the square) is the boundary of something in ¢*(F, 3).

Take the rational curve

a—x
X = (x, 1 - xﬂ—m----r)
b--x

in (P! ~ {1})%. Its only intersection with any codimension-1 face of the cube is the
point (¢, 1 — a,0); so we deduce that [{a, | — @] = 0 in CH*(F,2).
So we have produced a ring homomorphism

K¥(F) - CHA(F, %,
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3. The Map CH*(£, ) »> K} (F)

Defining the inverse map CH™(F, n) — K M(F)1is more complicated. If F is algebraically
closed, we can send the pomt (x,,..., x,) (P! — {1}}*~(the cube) (ie., (xy,..., X, ) E
(Pt~ {0, 1, c})™ to {xy,..., x,} € KX{F). For a general field F, a closed point p in
(P} — {0, 1, ac }}" need not be of the form (xy,..., x,} with x,& F; it may have residuc
ficld x{ p) which is a nontrivial finite extension of F. In any case, we have a map

Spec x{p) ~ (Pf — {0,1, 0})" = (A} - {0, 1})"

which gives n ‘coordinate functions’ xy...., x, e p) — {0, 1}, and we bave x(p) =
Fixy,..., x,). The map CHYF, n) —» K(F} is defined by sending p to

Nz {X1s--., Xa} & KM¥(F),
Here
(X X} EKM(p) and  Npyp: KH(E) — K¥(F)

{for any finite extension E/F of fields) is the norm homomorphism defined by Milnor
[6]. Bass-Tate [1], and Kato [5]. (Kata was the first to show that it was well-defined,
independent of a choice of generators for E over F.} For n = 0, KJ}(E) = KN¥F) = Z,
and the porm is just multiplication by [K:FJ; for n = 1, the norm Nyp: E*¥ = F* is
the asual norm studied in Galois theory,

We have to check that a O-cycle in ¢™(F, n) which is the boundary of a I-cycle in
cMF,n+1) maps to 0 in K¥(F). 1t suffices to consider an irreducible curve
Cec"(F,n 4+ 1); that is, C is an irreducible curve in (P* — {1)**! which meels the
codimension-1 faces of the (n + 1)-cube in poiats, and which does not meet the
codimension-2 faces.

Let D be the normalization of C; then D s a smooth curve with a finite map
D= C, as is well known. We can forget about C and just consider the finite {in
particular, proper) map D — (P! — {1})*'", which again mests the codimension-1
faces of the cube in points and does not meet the codimension-2 faces. It follows from
Example 1.2.3, p. 9, in [4] that the ‘boundary’ of D in ¢"(F, n} coincides with the
boundary of C: so it suffices to show that the boundary of D maps 1o 0 in K¥(F).

The map D - {P'— {1}}""' can be described by n+ 1 rational functions
g1- s Gn+1 o0 D. The pevious paragraph implies that ne g; is identically equal to 0
or o, and that any we D with g,(w) = 0 or o has g,(w) ¢ {0, oo} for all j » i

Let P(D) be the unique smooth compactification of D; P{D) is also a curve over F.
Then for each closed point w & P(D), there s an associated valuation on the ficld X of
rational functions on P(D) (or D) and, hence, (by [¢]) a map &, KM (K)—
KMxiw)). In this situation, Suslin’s reciprocity law ([8]) asserts that for any
xe K34 1(K),

Z Nx{w]x'r awx =0 in K:‘(F}

wa P
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{Note: Suslin originally proved this moduloe torsion, but thanks to Kato’s proof in
{51 that the norm is well-defined, Suslin’s proof gives this resuit. See {10] for detaiis.)

Now we have gy,.... gp+1 €K%, 50 {g1, ..., gas 1) € K3 1{K) and Suslin’s reciprocity
law says that

we PLD)
If we P{D) — D, ie., w is a ‘point at infipity’, then one of the g, must have gfw) = L.
(H not, the map D - (P' — {1}}""* would not be proper.) And no matter what the
other functions g; do at w, Milnor’s definition of &, shows that 8,{g,,..., a1} = 0if
some g(w) = 1. So we can write the sum without the points at infinity:

A T 1 _
2‘ N ey F aw{gl: a1l = 0.

we

For we D, Milnor’s definition of d,{g,-.., gs+1} shows that it's 0 if the g, arc all
holomorphic and nonzero at w. And if some g; does have a zero or pole at we D,
then all the others are holomorphic and nonzero, so Milnor’s definition gives

. P
ah'{gls rrey gﬂ"r].} = (_' l}‘_ ! Ordwgi{gl(w)s Trey gi(w)a s gn-l— J\(W)}
& K} (s(w)).

This implies that

Z Nx(w)graw{gix ~eerfint 1}

weld

is the clement of K¥(F) defined by the boundary of D in ¢™(F, nj. Suslin’s reciprocity
law asserts that this element is 0. So the map CH™(F, n) — KM(F) is well-defined.

4. The Composition CH"(F, n) —» K){(F) — CH(F, n)

From our definitions it is clear that the compositions KM(F) —» CHYF, n) > K} (F}is
the identity. We now show that the composition CHYF, n} -+ K)(F) — CHF, n) is
the identity. That is, for a closed point p&(Py — {0, 1, c0})", one has to show that

[7]=[Nmrp)] in CHYF, n),

where T am using an obviqus shorthand (the norm gives an element of XM(F), hence
(after a choice) a sum of F-rational points in {P} — {0, 1, co}}"**). Of course, this is
triviad if p is itself F-rational, hence in particular, if ¥ is algebraically closed. In
general, it will suffice to show that any element of CH(F, n) is equivalent to 4 sum of
F-rational points.

Here is the proof for CHYF,1). We arc given pe Py — {0, 1, o0} and, hence, a
generator x e x( p) — {0, 1}. Let

mx) = x4 — ag_ X7+ (- 1)4a,
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be the monic irreducible polynomial of x over F; clearly a, € F* is the classical norm
of x. Define a polynomial in two variables by

p(x, ¥) = n{x) — (x — 1)*"Y{x — ao)y.

Then p(x, yt = 0 defines a curve in (P' — {1}}% in fact an element of ¢*(F, 2). The
curve intersects y = 0 only in the given closed point p and y = o0 only at a.
Furthermore, as a polynomial in x, p(x, y) has leading coefficient 1 — y and constant
term {— 1)%ap{1 — 3), so it doesn™ intersect x = oo or x = 0 at ail. {Keep in mind that
we are working in (P* - {1}}%) So

[l =lao] = [Nup(p] in CHY(F, 1),

as desired.

The proof for CH(F, n) is as follows, for an infinite field F. (The proof for a finite
field is given in the next section.) Let S, be the set of points pe (P} ~ {0, 1, ac})" such
that the residue field x{ p) is generated over F by the first £ coordinates of p; that is,
such that & p) = F(x,, ..., x). Then Sy < - = §,, 8, is the set of F-rational points in
(P —{0,1,c})", and S, is the set of all closed points in the scheme (P} —
{0,1, o )™

LEMMA 2. If peS,, then p is equivalent in CH(F, n) to a sum of points in S, _,.

(Applying Lemma 2 repeatedly, we find that every element of CHYF, n) is equivalent
to a sum of F-rational points, as desired.)

Proof. In what follows, I will consistently write x4,...,x, to denote the ‘coor-
dinates’ of p, so that xy,....x, e p) — {0, 1}. } will use ¢,,..., ¢, as variables.

Every element of §; can be defined by » polynomial equations over F of the form:

piits} =0

Pulty, .. ) =0
Prar(ti, -t} = Liri

Pallys e B} = £

In fact, for i=1,...,k we can choose p; so that p(x,....,x,_,, %) is the monic
irreducible polynomial for x; over F(xy,...,x; ). (Of course, each element of
F{xg,....x,_;} can be written as a polynomial over F in x,,..., x;_,.) In particular,
this is true for p,; let d be the degree of x; over F(x,,...,x; _,), ie., the degree of p; as
a polynomial in £. If d = | then the lemma is true; so we assume d > 2. And for
I=k+1,..,n we choose p, 30 that pdx,,..., x;} = x;. By the division algorithm for
polynomials in one variable over the field F(xy,...,x,_,), we can assume that
P+ 15---» P have f-degree less than 4.

The idea is that we can replace p by a point in S, , in which x, is replaced by the
classical NOIM Ny, wvFixy.... xe. (Xe), along with points in S, for which the degree
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of x, over F(xq...,x;_,} 18 less than 4. [f this works, then Lemma 2 is
proved, by induction on d. f{For brevity, I will write N{x,) instead of

}VF(II;----Ikﬁff(-‘l'---.xk—z}(x*)')

Let {—1Yag(ty,...,1,_,) be the constant term of pt,,..., %), viewed as a poly-
nomial in t;. Define

gt gyeens o ) = iy, - ) — (= DT Hte—aolty, .os - D

Then consider the curve C in (P'—{1)**! defined by the following n equations,

pift:} =0

pk—l(r‘ls'--stk._l) =0
qlty,.. .t u) =0

Pis ey t) = iy g

prl(.tls ARRE] zk} =1,

We now describe the intersections of this curve with the codimension-1 faces of the
(n 4+ 1)-cube. By definition of py...., P, the curve C does not intersect t; =90,
£y = 0yuytyey =0, OF t;,, = oc. {Recall that x,,...,x,ex{p} — {0}) As a poly-
nomial in &, g(t;,....t.t) has leading cocfficient I —u and comslant ferm
(—1)%olty, ..., t,_ (1 — ). Also, we know that ag(xy,...,x;_,) # 0 in x{p), since
Pr(X1, .00y X _ 1. ) is the irreducible polynomial for x, over F(xi,..., x;..,) and x, # 0.
So C doesn’t intersect t, = 0 or f; = oc, Finally, since 1,,..., t; are never equal to v
on C, the equations involving ¢, , 4, ..., t, show that C doesn’t intersect ;.4 = 2, ...,
Of b, = 0.

So C can only intersect the faces u =0, u = 0, ty, = 0,..., and t, = 0. Further-
more, it intersects each codimension-1 face in the correct dimenston. Tn fact, it
intersects u = 0 only at the given point p, u = oc only at the point {X,,..., X, _g.
Ny ooy PilXiseres Xp— 1, N(x)),-.), and intersects ;=0 (k+1<i<n) only in
points because x; # 0 in i p). So if C meets no codimension-2 face of the cube, then
C defines an element of ¢"(F, n + 1), and we can conclude that the *boundary’ of C in
¢"(F, n) tepresents 0 in CHAF, n). This would mean that the given point pe S, is
equivalent in CH"F, n) to the sum of

(01000 gt NOGh s Pl X g0 vv, X o 1 NOGY, ) E Sy
and points in S; with the degree of the new x; over Fixy,...,x;_,) smaller than
for p. (For this we have to observe that p;, for k+ 1 <i<n, has f,-degree less
than the t,-degree of p,. Also, the equation glts,..., 4, u) = 0 is of degree 1 in #,
50 it can be solved for u as a rational function (over F)in xi,..., X,..;, and the new
Xy}
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The proof would thus be finished, except that € may in fact meet some
codimension-2 face of the cube. The rest of the proof consists of using general-position
arguments to avoid this problem; this is why we require here that ¥ be an infinite
field. (Finite fields do not have encugh elements for gencral position to work weil )

Here C n {u = 0} (= our original point p} intersects no other face, so the only troubie
occurs when C intersects two of the faces v = 00,1, ., = 0,..., , = O in the same point.
That is, there is trouble (1) when pi(xy,..., x;_;, &) and pilxy, ..., x,_q, ) (for some
i#j,4jelk+1,..,n}) are not relatively prime as polynomials in ¢, over the field
Fxy, ..y Xgq), o (2} when py{xy, ..., x,_y, N(x,)) = O for some ie{k +1,...,n}.

We first show that every point p € S, is equivalent to a sum of points in S,, with the
same degree d, for which the problem (1} does not occur.

First, we use a version of the carlier proof that [a] + [b] = {ab] in CH'(F, 1} to show
that p is equivalent in CH"(F, n) to a sum of points of the same form for which each
pxy, ... xy_ g, ) (K + 1 <7 < n) is either monic and irreducibie as a polynomial in ¢,
or constant as a polynomial in t;.

Then problem (1) only comes up if two {or more) of the p;’s, £ -+ 1 < i < n, are equal
and of degree > Q. In this case, we imitate the proof that {4, a} = {— 1,4} in Milnor
K-theory, using the Chow groups instead. Namely, by a version of ihe Steinberg
relation (2, 1 — a} = 0 in CH*F, 2) which I proved earlier, we deduce that

1—1/a
[ﬂ,a]: (a' 1 a )a)=('_1!a]-

Applying this result repeatedly, we deduce that p is equivalent to a sum of points of the
same form for which problem (1) does pot occur.

For problem {(2), it seems natural to change x, appropriately. To be precise, modulo
S,—y we can replace x; by ¢x,, for all but finitely many ¢ & F*. I claim that there are only
finitely many ¢ for which problem (2) arises; and this compietes the proof for an infnite
field F.

The simplest situation that shows how one can replace x; by cx;, and simpler terms, is
that if x is a point in P} ~ {0, 1, 2} of degree 4 {i.c, the residue field of x has degree d
over F), and c € F*, then (cx) = (¢%) + (x) in CHY(F, 1). This follows from our earlier
results, but I won’t write out the proof, since we need a more general version in the next
paragraph,

amely, we consider the following curve in {(P* — {1})"* L

pifty) =
Pr-1{ftsen fmy) = 0
(# — c‘*}Ph(h,..‘, L) — Cd(zk ~ Uiy, b i =0

P!-}l(rli"'!tk) = !k+1

pﬂ(tlv (R tk} = tn
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Here we know thatfor k+ I €i<n,
pixi L x=x# 0,
so, for all but finitely many c,
pdxe, s Xaopnexd # 0 and  plxy, ., xpo . 0%) £ 0.

This means that for ali but finitely many ¢, this curve is in ¢F, n+1). For such ¢, we
deduce that pec™F,n} is equivalent (in CH"F,n}) to the sum of (x,,...,x,_,,
CXgyeeey PAX1, .-, €X), ...}, @ point in §, ,, and points in §; with smaller 4.

We now verify that the significant point here, with x, replaced by cx,, will (for aimost
all ¢) solve problem (2). {Note that problem (1) remains soived, since the polynomials
Pyis-.» Py are unchanged) Here (for k+1<i<n Ny is replaced by
Nicx,} = ¢?Nixg), so problem {2) occurs when

Pilxqy, X 1, ON()) = 0.

Now d = |, N{x;) # 0, and the polynomial p;(x4,...,x;_,. t;} is not identically zero,
since pXs. ..., Xy} = X; # 0 in x( p). So there are only finitely many c € £* for which
Xt X1, EIN(x ) = 0, 1., for which problem (2) anses.

Thercfore, for F infinite, there exists a ¢ € F* for which problems (1} and {2} do not
arise. |l

5. Finite Fields

For F finite, & p) w1l also be finite, so the multiplicative group x{ p)* is cyclic; let z be
a generator. Then the given point p = (xy,...,X,), with x;€ x{ p}*, can be writlen as
(z',...,z%). Let n(u) be the irreducible polynomial for z over F; then p is the
projection of a point in (P — 1)"** defined by the following equations.

u) = 0
11 = u‘t‘
ty = '

{We project this point into (P! — {1})* by throwing out the u-coordinate.)

Then we can consider a curve in (P ~ {1})*** which is itsclf the projection of the
foHowing curve in (P* — {1})* 2. Here we define a, to be the norm N, +(2), so that
n(u) has constant term (- 1)aq.

) - (0 — ag)(u — 10 = 0
t]_ = u"‘
o= u™

(This curve is projected into (P* — {1})"*! by ignoring u.)
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The curve in (P — {1})"*" intersects the faces of the (n + 1)-cube only for v =0,
giving the original point p, and for v = oo, giving (a%,..., 45} (or 0, if one of the
powers of ag equals 1). This shows that p is equivalent in CHYF. n) to an F-rational
point. This completes the proof for finite fields F.

I should mention that the Milnor K-groups KMF of a finite field F are actually 0
for n 2z 2 by [6], and so the groups CH"(F, n} are also 0 in this case.

6. Comments

The difficulties in the last part of the proof {proving that the composition
CHY(F, n) - KX(F) — CH"(F, n} is the identity) result from the complexity of the
definition of the norm map in Milnor K-theory. The norm map on K% has a
well-known explicit description, but Milnor and Bass and Tate were only able to
construct the general norm map by an inductive procedure similar to my argument
above,
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